If it's not what You are looking for type in the equation solver your own equation and let us solve it.
21n^2+20n-25=0
a = 21; b = 20; c = -25;
Δ = b2-4ac
Δ = 202-4·21·(-25)
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2500}=50$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-50}{2*21}=\frac{-70}{42} =-1+2/3 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+50}{2*21}=\frac{30}{42} =5/7 $
| 2b-1=-5 | | x-11+4x-2+x-9+3x-5=0 | | -9(4+2a)=2 | | 2m23=17-8m | | x-11+4x=2+x-9+3x-5=0 | | 2x+7-5x=22 | | 3(x-4)+3x=-2(x-2)+2 | | 4+4s/4=3 | | 3y-2y=42 | | 12+3(4y-1)=13+12y-4 | | x-1/18=1/12 | | -5+x=-18 | | p/2-9=1 | | F(x)=5+2x-x² | | 20=-4/9y | | 5c+8+6c=34 | | 2x^2-3x+9/8=5 | | 4/3=y-42/5 | | x-(14+2x)=13+2x-3 | | (2y+1)(y-3)=0 | | b=95+(20+9) | | -2/5u=14 | | -4y=8=-8 | | 2x^+7x-15=0 | | 4c-15=7c+12 | | 1/2k=5/6k | | 17-3x+3=5-7•(x+1) | | 7x^2=3x=1+0 | | 2(2+3x)=8 | | x-8/5=12 | | (6x−2)/4=x−2 | | 15x+13x=72 |